
Evaluating a network address shu�ling
approach as DDoS protection for Edge Clouds

Bachelor’s Thesis of

Julian Todt

at the Department of Informatics

Institute for Telematics (TM)

Chair for IT Security Methods and Systems

Reviewer: Prof. Dr. Thorsten Strufe

Second reviewer: Jun.-Prof. Dr. Christian Wressnegger

Advisor: M. Sc. Simon Hanisch

24th February 2020 – 20th July 2020



Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe







Abstract

Edge clouds which are a new form of cloud on the edge of the internet, require new

lightweight mechanisms to mitigate DDoS attacks. Network address shu�ing ap-

proaches like Mole Hunt and MOTAG that mitigate attacks by isolating attackers are

being proposed but their e�ectiveness is unclear. To assess this, an evaluation frame-

work is designed, implemented and used to create realistic and in-depth analysis on

these moving target defenses as well as compare di�erent approaches.

I de�ne requirements for the framework based on realistic assumptions about edge

clouds and their attackers, especially their resources. The framework is designed to set

up a model of an edge cloud infrastructure environment including attackers, clients,

routers and the edge cloud itself. During an evaluation an exchangeable attack pattern

directs the attackers to send realistic attack tra�c to the edge cloud to which the clients

are connected while the framework collects metrics on the mitigation’s performance.

Metrics include technical aspects like the number of required rounds and used addresses

as well as quality of service statistics.

The results show that while the tested moving target defenses are generally able to

defend edge clouds against DDoS attacks, they struggle against sophisticated attack

patterns. In comparison, MOTAG’s and Mole Hunt’s algorithm perform similarly, but

Mole Hunt’s address-announcing technology performs better. Concluding, network

address shu�ing approaches as DDoS protection for edge clouds are promising but still

have room for improvements.
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Zusammenfassung

Edge Clouds sind eine neue Form der Cloud am Rand des Internets, welche neue

ressourcenschonende DDoS Verteidigungsstrategien benötigen. Es werden „network

address shu�ing“-Ansätze wie Mole Hunt und MOTAG vorgeschlagen, die Angri�e

abschwächen indem sie Angreifer identi�zieren, aber die E�ektivität dieser Ansätze ist

unklar. Um dies zu beurteilen, wird ein Evaluationsframework entworfen, implementiert

und benutzt, um realistische und tiefgründige Analysen dieser Verteidigungsstrategien

zu erstellen und verschiedene Ansätze zu vergleichen.

Die Anforderungen an dieses Framework werden auf Basis realistischer Annahmen

über Edge Clouds und ihrer Angreifer de�niert, insbesondere deren Ressourcen. Das

Framework ist dazu konzipiert, ein Modell einer Edge Cloud Infrastruktur aufzusetzen,

die Angreifer, Klienten, Router und die Edge Cloud selbst beinhaltet. Während einer

Evaluation steuert ein austauschbares Angri�sschema die Angreifer, die realistischen

Angri�stra�c an die Edge Cloud schicken mit der die Klienten verbunden sind. Wäh-

renddessen misst das Framework Metriken über die Leistung der Verteidigungsstrategie.

Diese Metriken beinhalten technische Aspekte wie die Anzahl an benötigten Runden

und benutzten Adressen sowie Servicequalitätsaspekte.

Die Ergebnisse zeigen, dass während die getesteten Verteidigungsstrategien grund-

sätzlich Edge Clouds gegen DDoS Angri�e verteidigen können, diese Probleme mit

ausgeklügelten Angri�sschemen haben. Im Vergleich zeigt sich, dass die Algorith-

men von MOTAG und Mole Hunt ähnlich gute Ergebnisse zeigen, jedoch Mole Hunt’s

Adressankündigungstechnologie zu besseren Ergebnissen führt. Zusammenfassend sind

„network address shu�ing“-Ansätze vielversprechende DDoS Verteidigungsstrategien

für Edge Clouds, die jedoch noch Raum für Verbesserungen haben.
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1. Introduction

Edge clouds are a new form of distributed cloud on the edge of the internet, designed

to reduce latency to users and bandwidth to the core of the internet. Edge cloud nodes

are small compute nodes that are physically distributed and are therefore closer to end

users. This results in reduced latency which enables services requiring low latency

such as cloud gaming [9]. Distributed denial-of-service (DDoS) attacks continue to pose

severe threat to today’s internet services as their intensity and sophistication increases

[30]. Today’s datacenter-based general purpose clouds defend against DDoS attacks

by running sophisticated DDoS attack prevention, detection and mitigation services

on their substantial computing power as well as simply outscale most attackers. Edge

clouds, which are destined for rollout together with 5G in the coming years, will not

have the required computing power to defend against DDoS attacks like datacenter

clouds do. This means that edge clouds cannot run those DDoS defense mechanisms

which would leave them undefended and prone to DDoS attacks. To protect edge clouds

with their limited computing power from DDoS attacks, new lightweight mechanisms

to mitigate DDoS attacks on edge clouds are being proposed.

One of these mechanisms is Mole Hunt [12], a moving target defense. Mole Hunt

mitigates DDoS attacks by isolating attackers. Whenever the edge cloud is attacked,

Mole Hunt shu�es the network addresses and assigns clients a new addresses to use.

After a limited number of shu�es, the sequence of attacked addresses is unique and the

attacker is identi�ed. While Mole Hunt seems promising in �rst theoretical evaluations,

in-depth and more practical evaluations are needed to determine how Mole Hunt

compares against other moving target defenses and whether Mole Hunt is suitable to

defend edge clouds against DDoS attacks.

In this Bachelor’s thesis, I will create an evaluation framework for moving target

defenses as DDoS attack mitigations in form of a virtual prototype that simulates

attacks. The framework will be based on realistic expectations for edge clouds and

DDoS attackers and will include multiple attack patterns. By implementing both Mole

Hunt and MOTAG, another moving target defense, on this framework I will be able

to compare the two mitigations in a realistic and practical environment. Additionally,

because the framework is designed to model an edge cloud environment, I will be able

to evaluate whether the mitigations are suitable as DDoS protection for edge clouds.

Related work is presented in chapter 2 and the necessary background information

for this thesis is included in chapter 3. In chapter 4 I will use the acquired background

information to write down requirements for the framework. The design of the frame-

1



1. Introduction

work and how it ful�lls all requirements is shown in chapter 5. The implementation of

the framework including all implementation decisions made is shown in chapter 6. I

use the framework to evaluate di�erent mitigations and settings in chapter 7. I evaluate

the framework in chapter 8 and show my conclusions in chapter 9.

2



2. RelatedWork

In this chapter I want to present related work in the �eld of evaluating DDoS mitigations.

Research on general purpose DDoS mitigation evaluation is rather rare, instead most

mitigations feature a speci�c evaluation of their strategies in the evaluation section of

their respective papers. This makes comparisons between di�erent strategies di�cult

because every mitigation is evaluated slightly di�erently. However, there are some

publications that acknowledge the need for a common evaluation strategy. In the

following I will �rst examine the speci�c evaluation strategies of some DDoS mitigations

and will then examine some propositions for common evaluation strategies.

In the evaluation of the moving target defense MOTAG [19, p. 4], the main consid-

erations are the number of required shu�es and the amount of overhead introduced

by the mitigation. The number of required shu�es refers to the amount of times that

the mitigation’s algorithm has to change proxy assignments of clients until a speci�c

percentage of clients are considered saved. This evaluation is done by simulating the

shu�ing algorithm of the mitigation using MATLAB. While for some variables there

are di�erent values being tested, e.g. number of insiders, clients and proxies, this is

done without any reasoning why their values are realistic. Also, other assumptions are

made and not varied, e.g. that insiders always attack which is the best possible scenario

from the mitigation’s perspective. The evaluation of introduced overhead examines the

additional latency introduced by routing client’s tra�c via proxies and not direct and

should be considered speci�c to the exact servers picked in the evaluation.

Similarly, in Mole Hunt’s self-evaluation [12, p. 6] the key metrics being observed are

the number of required rounds which is comparable to MOTAG’s number of required

shu�es and the maximum number of concurrent addresses. The experiments are once

again simulations of the algorithms of the evaluated mitigations. Mole Hunt’s evaluation

focuses on comparing its approach with similar approaches, namely MOTAG and DoSE,

showing it requires less rounds and fewer concurrent addresses. The evaluation includes

comparisons for di�erent numbers of clients, insiders and Mole Hunt’s splitsize option

but does not justify the chosen values. Like in MOTAG’s evaluation, it is assumed that

all insiders always attack, MOTAG’s algorithm however is provided with the assumption

that only one insider attacks, which leads to an unrealistic result for MOTAG.

To summarize, the mitigation’s evaluations focus on simulating the mitigation’s algo-

rithms and extracting technical metrics. They do not evaluate the impact that a DDoS

attack has on the connection with clients such as a degradation in quality of service and

how this e�ect is mitigated by the defense strategies. Also, the evaluation parameters

3



2. Related Work

are not necessarily realistic and especially do not consider edge cloud applications.

Lastly, more sophisticated attackers that potentially have insider knowledge are not

considered.

To solve the problem of not being able to compare the evaluations of di�erent DDoS

mitigations, common evaluation methodologies have been proposed. In [22], the authors

create sophisticated and resource-intensive tools that automatically collect examples of

legitimate tra�c, attack tra�c and network topologies. This allows them to create a

very realistic evaluation environment. The proposed metric focuses on the e�ectiveness

of the evaluated mitigation by observing the success of high-level transactions during

attacks. The sophistication of this framework however results in it being hard to use

and therefore mitigations are rarely evaluated using it. While the authors of [15] do not

propose an evaluation methodology themselves, they identify �ve dimensions where

evaluations have to be carefully designed and then give recommendations in all of these

areas. The multitude of recommendations per category however means that multiple

evaluations which are all based on this advice will not necessarily result in comparable

results.

As a consequence, the framework designed and used in this thesis di�ers from other

mitigation evaluations in the following points. Not only the algorithm of the mitigation

is simulated but rather the entirety of the mitigation and its technology is implemented

and evaluated. Since the goal is to realistically evaluate the mitigations for use on

edge clouds, the experimentation parameters are based on realistic expectations about

edge clouds and their attackers. Also, more sophisticated attackers that purposely try

to disrupt the tested mitigations are implemented and used. Lastly, the framework is

designed to be highly customizable and extendable while still being easy to use.

In other aspects, this thesis’ framework is similar to other evaluations and expands on

them. For metrics, on the one hand, there are technical metrics that allow the algorithms

of the mitigations to be analyzed and compared. Using the number of required rounds

and the number of used addresses as metrics allows comparisons with the mitigiation’s

self-evaluations. On the other hand, there are quality of service metrics that allow

for an overall evaluation of the mitigation. They give an answer to the core question

of whether the mitigations are able to successfully defend against DDoS attacks by

evaluating whether clients experience a degradation of quality of service during an

attack. Like the authors of [15] recommend, this metric is created by combining a

multitude of base network statistics into a few meaningful metrics.
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3. Background

In this chapter I want to provide all necessary background information that is required

for the following chapters. Firstly, I explain the reasoning for edge clouds and their

design as well as some of the consequences this design has. I also take a look at how

edge clouds are being implemented. Secondly, I go into detail about DDoS and all of

it’s mitigations, especially the types and speci�c approaches that I will be evaluating in

this thesis.

3.1. Edge computing

Current general purpose datacenter based clouds excel at providing computation and

storage resources at scale. While this is su�cient for many internet services, trends

like mobile computing and Internet of Things involve edge services that require lower

latency and less bandwidth to the core of the internet infrastructure which includes

internet exchange points (IXP) and main datacenter clouds [9], [29]. Latency to dat-

acenters cannot be improved as it is limited by physical constraints and bandwidth

demands increase as more and more data is created and consumed on the edge of the

internet.

For example, cloud gaming is a new service where the player does not have the

processing power for running the game at home but rather only has a small client that

receives the input from the player, forwards it to a server where the game is actually

run and then receives a video stream to display to the user. This service requires low

enough latency between the client and the server in order for the user not to notice

any lag and enough bandwidth to send the video stream of the game. At the same time,

various smart devices and the Internet of Things (IoT) generate large amounts of data

that are being sent to the cloud for processing and storage, increasing the bandwidth

needs to the core of the internet [24].

Edge clouds are a new form of distributed cloud on the edge of the internet and

can address these issues. By being physically closer to the user, the edge cloud can

dramatically reduce the latency to the edge device, see Figure 3.1. By pre-processing

data on the edge or caching data from the core of the internet, edge clouds can also

reduce the required bandwidth to the core of the internet [9]. For example, data can be

compressed or �ltered on the edge cloud before being send to the datacenter cloud. For

instance the edge cloud could remove all parts without motion from a security camera
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3. Background

Figure 3.1.: Edge clouds have lower latency to users because they are physically closer

feed before it is archived in the datacenter, reducing bandwidth, see Figure 3.2. Caching

data on the edge means that a copy of data on the datacenter cloud is saved on the edge

cloud and when a user requests this data, it is served from the edge cloud rather than

the datacenter cloud. This also reduces the bandwidth usage to the core of the internet,

especially if the cached content is accessed frequently.

While low latency and bandwidth reduction are some of the advantages of edge

clouds, the fact that an edge cloud node only has few computation resources in com-

parison to datacenter clouds in one of their disadvantages. This means that, while edge

clouds generally increase the availability of internet services since they add additional

distributed resources, the availability of a single edge cloud can easily be disturbed. Dur-

ing peak hours, even legitimate tra�c only might supersede the computation resources

of a single edge cloud [29]. These limited resources make edge clouds an especially

attractive target for attackers [12], [29].

Some argue that edge clouds can be compared to peer-to-peer (p2p) networks, where

every peer is both server and client [32]. Clients that want to access a service have

multiple options for servers but every server is considered unreliable and might become

unavailable at any time, requiring clients to change to a di�erent server. Edge clouds are

also server and client at the same time, providing services to end users while accessing

the services of datacenter clouds as a client. And since edge clouds are considered

easily overwhelmable because of their limited resources, they can be considered to be

unreliable. But as opposed to peers in p2p networks, switching the service provider

should an edge cloud become unavailable is not straightforward. Other edge clouds
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3.1. Edge computing

Figure 3.2.: Edge clouds can reduce tra�c to datacenter clouds through pre-processing:

Traditional tra�c �ow in red - Tra�c �ow using edge clouds in green

might not be able to handle the additional tra�c of the now unavailable edge cloud

since they also do not have a large number of resources, so the only choice for a fallback

would be the datacenter cloud. But falling back to other edge clouds or the datacenter

means that in most cases the requirements for edge services (especially low latency)

can no longer be ful�lled, see Figure 3.3.

As a result of this edge cloud design, where a single edge cloud is vulnerable to an

excessive amount of tra�c, additional measures have to be put in place to make sure

that edge clouds can provide the service they are designed to provide. The authors of

[29] propose a hierarchical edge cloud infrastructure as opposed to the p2p approach

where all edge clouds are equal to be able to handle all legitimate requests on edge

clouds with best possible latency even during peak times. Still, low-latency DDoS

mitigation for edge clouds is an open problem.

3.1.1. Implementation

In this section I want to give a quick overview on how the theoretical concept of edge

clouds is implemented or planned to be implemented in the future.

Content Delivery Networks (CDN) are considered to be the predecessor of edge

clouds. While they do not provide any computing resources for applications, they cache

frequently accessed data from datacenter clouds in order to deliver this content to end

users with lower latency than they would from the datacenter clouds. Examples of
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3. Background

Figure 3.3.: Result of an unavailable edge cloud

When the edge cloud in the middle is unavailable, there are no datacenters within the latency

perimeter of the computer and of the phone in the middle and edge services cannot be

provided.

CDNs are Cloud�are with Points of Presence (PoP) in 200 cities [10] and Amazon Web

Services CloudFront with 216 PoP in 84 cities, see Figure 3.4 [1].

There are also already cloud providers that run networks that they call "edge cloud

platforms" like Akamai [4] or Fastly [11]. But in the case of Fastly, they run barely

more PoP then some cloud platform providers (e.g. AWS) run datacenter clouds (and in

similar locations) which means there is no latency reduction based on reduced distance

to the end user and their PoP are actually designed to have a lot of computing power,

see Figure 3.5 [11]. This means that their edge cloud implementation does not actually

match my de�nition of edge clouds, but rather the one of datacenter clouds.

But this does not mean that there are no plans to implement edge clouds as I described

them before. In addition to adding the ability to run computational tasks on Cloudfront

PoP (Lambda@Edge), AWS is planning AWS Wavelength [2]. This service will deploy

AWS infrastructure (compute and storage) at the edge of 5G networks in partnership

with telecommunication providers like Verizon, Vodafone and SK Telecom. Wavelength

will provide single-digit millisecond latency and is designed for edge services like game

streaming [2].

3.2. Distributed Denial-of-service attacks

Denial-of-service (DoS) attacks try to prevent the legitimate use of internet services

by exhausting the resources of the target. This can be done for example by exploiting

bugs of the service or overwhelming the servers with a stream of packets. Distributed
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3.3. DDoS mitigation

Figure 3.4.: Map of AWS CloudFront Points of Presence [1]

Denial-of-service (DDoS) means that the attack originates from multiple machines,

often one handler plus multiple infected machines acting as agents (botnets) [23]. This

is done to increase the number of malicious packets sent to the target.

There are a multitude of reasons why DDoS attacks work and there are many di�erent

types of DDoS attacks [23], which makes defending an infrastructure against DDoS

attacks di�cult.

According to [30], "Distributed-Denial-of-Service (DDoS) attacks represent the domi-

nant threat observed by the vast majority of service providers — and they can represent

up to 25 percent of a country’s total Internet tra�c while they are occurring. Globally

the total number of DDoS attacks will double to 14.5 million by 2022 (from 2017)".

DDoS attacks on services hosted in the cloud often take shape as Economic Denial of

Sustainability (EDoS) attacks. Since pay-as-you-go and autoscaling are core features of

cloud computing, DDoS attacks often lead to an automated upscaling, causing economic

damage to the service providers [28].

3.3. DDoSmitigation

Datacenter-based clouds as a whole are fairly DDoS attack resilient because of their sub-

stantial computing power, allowing them to run extensive attack prevention, detection

and mitigation services as well as being able to outscale most attackers [28], [3]. There

are various di�erent DDoS defense mechanisms that evolve as quickly as attackers

evolve their attacks. Many mechanisms try to �lter attack tra�c while protecting

legitimate users’ tra�c by comparing it against known attack patterns, others try to

locate attackers or modify communication protocols to stop attacks [15].
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3. Background

Figure 3.5.: Map of Fastly Points of Presence [11]

Edge clouds on the other hand, will not have the computing power to run any of

these sophisticated mechanisms but instead will require a more lightweight approach

to mitigate DDoS attacks [12]. For an overview of DDoS attack mitigations and their

usability on edge clouds, see Table 3.1.

Current "edge cloud" implementations from Fastly and Akamai defend against DDoS

attacks by rerouting tra�c during attacks through scrubbing centers, which are high-

bandwidth high-computing power datacenters designed to absorb and �lter DDoS

attacks [11] [4]. This obviously results in signi�cantly increased latency for users and

would defeat the purpose of an actual low-latency edge cloud.

3.4. Moving Target Defense

I will focus on mechanisms using Moving Target Defense (MTD), a technique where

the attack surface is changed when attacks are detected, increasing uncertainty and

randomization. Through continuous random recon�guration of the target, the attacker

is limited in gathering intelligence and the victim is able to evade the DDoS attack [21].

In the following I will take a closer look at some speci�c MTD approaches.
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Mitigation Short description Problems Edge cloud ready?

Filtering

Compare tra�c against known

attack tra�c; separate legitimate

tra�c from attacks

• requires adequate resources

• sophisticated attacks might not get

�ltered

• unclear where ’known attack tra�c’

is from

No, not enough resources

Neural network

�ltering

Train a Neural Network with

attack tra�c then let it �lter

incoming tra�c

• requires adequate resources

• sophisticated attacks might not get

�ltered

• legitimate tra�c might get �ltered

No, not enough resources

Rate limiting Drop all tra�c after a limit is hit

• also hits legitimate users

• basically the same result as no miti-

gation

No, too restrictive

Locating

attackers

Discard tra�c from attacker after

he is identi�ed

• identi�cation is potentially di�cult

• no mitigation while identifying

• infrastructure has to be resilient

enough to allow identifying

No, not enough resources

Outscaling

Have and use more resources than

the attacker is able to overwhelm

• requires a lot of resources

• requires resilient infrastructure that

handles upscaling

No, not enough resources

Continues on next page.

Table 3.1.: Comparison of DDoS attack mitigations [28], [3], [15] - Part 1



3.
Background

Mitigation Short description Problems Edge cloud ready?

Continuation from previous page.

Turing Test

Verify legitimacy of users by

requiring them to pass a Turing

test (e.g. CAPTCHA)

• limits legitimate clients

• increases access time

• requires resilient infrastructure

• bots might still pass

No, not restrictive enough (only a

few presumed legitimate users

have to be malicious)

Proof of Work

Clients have to solve

time-consuming crypto-puzzle

• limits legitimate clients

• increases latency

• requires resilient infrastructure

• attackers can solve as well

No, not restrictive enough. While

the number of malicious users is

restricted, it might still be high

enough

Prioritize trusted

users’ tra�c

Drop tra�c of users that are not

considered trustworthy

• requires calculation of trustworthi-

ness

• requires resilient infrastructure for

calculation

• only application layer

If the application supports it and

trustworthiness calculation is

lightweight enough in combination

for mitigation against non

application layer attacks

Latency

perimeter

Limits maximum latency for users;

drops all other tra�c

• attackers can also satisfy latency

constraint

Alone not restrictive enough, but

can be useful part in Edge Cloud

mitigation

Moving Target

Defense

Randomly and continuously

change target attack surface to

make attacks harder

Topic of this Bachelor’s Thesis

Table 3.2.: Comparison of DDoS attack mitigations [28], [3], [15] - Part 2

1
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3.4. Moving Target Defense

3.4.1. MOTAG

MOTAG [19] o�ers DDoS protection by connecting clients to the application server via

a large pool of proxies whose addresses are only known by authenticated legitimate

clients. This means that the only way attackers can send DDoS tra�c to the application

is when an insider forwards the address of the proxy it is connected to to the attackers.

In case a proxy gets attacked, that proxy is then replaced and the clients that were

connected to it get distributed to other proxies. The insider can then forward the

address of the new proxy it is connected to to the attackers and the attackers attack

that proxy. This process is repeated until only a single client is connected to a proxy

that is attacked which means that this client is the insider which results in the insider

being blocked from accessing the application. During this shu�ing process, legitimate

users are connected to the application via other proxies which minimizes the impact

the attack has on them.

MOTAG o�ers multiple algorithms for determining client to proxy assignments

during shu�ing, an optimal algorithm and a greedy algorithm. The greedy algorithm is

preferred because it is much more performant while it’s assignments are only slightly

worse than optimal. MOTAG assumes a large pool of proxies that are geographically

distributed but only a few proxies are actively used at the same time.

3.4.2. Catch Me If You Can

The authors of [20] present a similar MTD approach called Catch Me If You Can.

Compared to MOTAG, it does not require authentication and instead of proxies, it

replaces and shu�es the application servers themselves, leveraging the computing

power in the cloud. During an attack, Catch Me If You Can uses the same algorithms

as MOTAG to determine client to server assignments. Running as well as frequently

starting and stopping multiple application server replicas results in Catch Me If You

Can requiring signi�cantly more computing power than MOTAG.

3.4.3. DoSE

Denial of Service Elusion (DoSE) [31] is another moving target defense that is similar

to MOTAG. Instead of varying the technical implementation of MOTAG like Catch Me

If You Can does, DoSE uses a di�erent algorithm for proxy to client assignments. This

algorithm tries to be more cost-e�cient by using less proxies. Also, DoSE does not

require authentication but instead uses a "smart management layer" that communicates

via a CDN and requires Proof-of-Work on a client’s �rst connection. The authors of

DoSE [31] argue, that MOTAG’s stateless algorithm can be exploited by intelligent

attackers while DoSE’s algorithm can reduce both the time until insiders are identi�ed

and the number of failed transactions of legitimate clients while using less proxies.
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3. Background

Approach Tech? Algorithm?

MOTAG Lots of Proxies

Insider-Number-Assumption

based Optimal and Greedy

Algorithm

Catch Me If You Can Replicate Application Servers MOTAG Algorithms

DoSE Less Proxies

Risk-Assumption based

Algorithm

Mole Hunt

Directly add/remove network

addresses

n-ary search

Table 3.3.: Comparison of MTDs [19], [20], [31], [12]

3.4.4. Mole Hunt

I will focus on a moving target defense mitigation strategy designed for use on edge

clouds, Mole Hunt [12]. Mole Hunt works similarly as the other MTDs, but instead

of using proxies with di�erent network addresses like in MOTAG or DoSE, network

addresses are directly assigned and removed from the application server. When there is

no currently apparent attack, the application server has one network address that all

clients use. Once the application server gets attacked, its network address is removed and

new (random) network addresses are assigned to it. Clients that were connected using

the just removed network address get distributed along the new network addresses and

their connections are migrated. This process is repeated whenever a network address

gets attacked until the insiders that forward the network address they are currently

connected to, to their botnets to facilitate the attack, are isolated.

This new approach mitigates the DDoS attacks by repeatedly changing network

addresses of the target leaving the attacks run into nothing shortly after they are

detected. It can also detect and isolate the insider that is leaking the network addresses

because the sequence of network addresses that a client is assigned to is unique after a

su�cient amount of shu�es which means whichever sequence of network addresses a

DDoS attack follows can be traced back to the insider. Because this approach does not

use proxies (which require computing power) but only changes routing, this mechanism

is very lightweight.

3.4.5. Comparison of MTD approaches

I compare the di�erent moving target defense approaches in Table 3.3. I also show a

graphic representation of how the di�erent approaches work in Figure 3.6.
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3.4. Moving Target Defense

(a) MOTAG/DoSE

(b) Catch Me If You Can

(c) Mole Hunt

Figure 3.6.: Graphical representation of the di�erent MTD approaches [19], [20], [31],

[12]

15





4. Requirement Analysis

To evaluate network address shu�ing approaches as DDoS protection for edge clouds,

I plan on creating an evaluation and testing framework based on realistic assumptions

about edge clouds as well as DDoS attackers. In this chapter, I will de�ne requirements

for the framework for it to be considered to be based on realistic assumptions as well

as other requirements for the framework.

4.1. Edge Cloudmodel

The requirements on how to model edge clouds in my framework are based on the

theoretical knowledge that I have about edge clouds, see chapter 3. In the following, I

will list the characteristics of edge clouds that are vital to how edge clouds are required

to be modeled in my framework, especially those that are distinct to edge clouds and

di�erentiate them from datacenter clouds as well as those that are required by the DDoS

mitigations which are planned to be implemented.

A010 Limited resources

Edge clouds have the resources to serve legitimate user’s requests, but not a lot

more. Even a higher number of legitimate clients than usual might overwhelm the

resources of a single edge cloud. A DDoS attack on a single edge cloud without

any mitigations can easily overwhelm the resources.

This is because edge clouds, as opposed to datacenter clouds are a distributed

system with many points of presence, potentially in every 5G cell tower. Therefore

a single edge cloud node does not require a lot of resources and therefore will not

have a signi�cant amount of resources more than required to server legitimate

clients.

A020 Limited bandwidth

One of these limited resources is bandwidth. Edge clouds are connected with

signi�cantly limited bandwidth. Attackers might be able to overwhelm this

bandwidth and cause legitimate tra�c to be dropped.
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Because edge clouds are only designed to serve a geographical limited number

of clients, edge clouds will not have a signi�cant amount of bandwidth more

than they require. Also, since edge cloud nodes are connected at the edge of the

internet and not the core, their bandwidth is limited.

A030 IPv6 ready

Edge will use IPv6 network addresses.

Network address shu�ing DDoS mitigation approaches rely on a large pool of

available network addresses. Legacy IPv4 addresses do not allow for this.

A040 Dynamic subnet-routing outside of edge cloud

The routing decision about tra�c to addresses within the edge cloud subnet is

done outside the edge cloud. The routing can also be quickly and dynamically

changed by the mitigation running on the edge cloud.

This is required because network address shu�ing approaches rely on hiding the

actual network address of the edge cloud within a known subnet. If the entire

subnet is routed to the edge cloud, all tra�c addressed to the subnet will go to

the edge cloud. Because the bandwidth of the edge cloud is limited (requirement

A020), this means that tra�c will be dropped before a routing decision is made,

especially whether the recipient address is a valid edge cloud address. This means

that even if the routing correctly drops all attack tra�c and forwards all legitimate

tra�c, some legitimate tra�c will still not reach the edge cloud. To solve this,

the routing decision has to be done outside the system with signi�cantly limited

bandwidth. This means that in order for the mitigations to be able to block

attackers from sending attack tra�c to the edge cloud, they have to be able to

modify the routing that is happening outside of the edge cloud.

A050 Connection migration

Continuous connections between the edge cloud and its clients can be migrated

from one edge cloud network address to the next.

This is because some edge services will require a continuous connection between

the client and the edge cloud, e.g. video game streaming and edge clouds are

supposed to provide a service with high-availability. When mitigations shu�e

network address assignments of clients, some of those continuous clients will be

assigned new network addresses which requires them to migrate the connection

to the new address.
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4.2. Attacker model

4.2. Attacker model

Similarly, in this section I want to extract the key characteristics of DDoS attackers on

edge clouds into requirements on how to model them in my framework.

B010 Su�cient, but limited resources

Attackers have su�cient resources to overwhelm a single edge cloud, but do

not have enough resources to overwhelm the internet backplane or the routing

infrastructure.

If the resources of attackers are too few to overwhelm an edge cloud node, no

mitigiation would be necessary. At the same time, if the attackers have too

many resources, and can overwhelm routing or internet backplane infrastructure,

mitigations on the edge cloud are helpless, because legitimate tra�c is dropped

before the mitigation can save it. This scenario is also not realistic since the

internet core has a substantial capacity and attackers are limited by their latency

at accessing edge clouds. Therefore, it is realistic to assume that attackers have

su�cient, but limited resources.

B020 Limited number of insiders

The number of clients of the edge cloud, that forward the network address they

are currently connected to, to the attackers to be attacked (= insider) is limited.

Because of edge cloud’s geographical/latency limitations, the number of overall

clients of a single edge is limited. It can also be assumed that a large majority of

the clients are legitimate based on how the edge environment will be designed

and that an edge cloud will only be existent when edge services are in demand.

B030 Limited number of attackers

The number of clients that send malicious tra�c is limited.

Since edge clouds are designed to only serve a speci�c geographical region, only

clients within this region will be able to send malicious tra�c. Edge clouds will

do this by running a latency perimeter, dropping tra�c that takes over a speci�c

threshold to travel from the client to the edge cloud and back.
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B040 DDoS �ooding attacks

Attackers attack by using DDoS �ooding attacks.

This is because other DDoS attacks have speci�c mitigations based on how exactly

the denial-of-service is achieved that are much more e�ective for this speci�c

type of DDoS attack. Flooding attacks are the most common type of DDoS attack

and do not have a speci�c mitigation. Also, mitigations against �ooding attacks

will work against most other attacks.

B050 Di�erent attack patterns

Attacks on edge cloud might use a variety of di�erent attack patterns including

straightforward approaches as well as sophisticated attacks which try to outma-

neuver the mitigation. The framework should allow for di�erent attack patterns

to be tested against the mitigations. The patterns should be easily swappable in

the framework and it should be possible to add new ones.

This is a requirement because while many DDoS attacks are straightforward and

usually rely on their brute force, the sophistication of these attacks increases.

Especially considering the limitations the edge environment brings with, sophis-

ticated attacks should be expected.

B060 Insider information

Additionally to currently used network addresses by the insider clients, the

attacker might have other insider information including but not limited to the

mitigation being run and its con�guration parameters.

Considering the current documentation on which DDoS mitigations are in use

in datacenter clouds, similar information might be available about edge clouds

when they are available.

4.3. Benchmarks

Aside from creating a realistic representation of an edge cloud under attack, the frame-

work will need to capture data and create useful metrics so that mitigations can be

properly evaluated. You �nd the requirements for these benchmarks in the following.

C010 Metric: Required Rounds

The number of rounds it takes a mitigation until the attackers are not able to

attack anymore. A round is de�ned as a sequence of actions:
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1. The attackers choose one or more of the network addresses of the edge

cloud known to them through their insiders. This choice is based on the

attack pattern.

2. The attackers start a �ooding attack on the chosen address(es).

3. The mitigation mitigates the �ooding attack which includes making the

attacked address(es) unavailable.

Attackers are unable to attack anymore when all their insiders have been identi�ed

by the mitigation and have been blocked from accessing the edge cloud.

The number of required rounds is the key metric when determining the e�ective-

ness of a shu�ing algorithm as it quanti�es the time until a series of attacks is

mitigated without being implementation-speci�c.

C020 Metric: Used Addresses

The number of network addresses the mitigation requires until the attackers are

not able to attack anymore.

While this number can be calculated when the number of required rounds as

well as the implementation of the mitigation and its con�guration parameters

are known, it is an important metric when comparing mitigations or mitigation

con�guration parameters. Since the number of required rounds and the number of

used addresses are usually a trade-o� when designing a network address shu�ing

DDoS mitigation (a lower number of required rounds can be achieved by using

more addresses), both metrics are required to properly compare mitigations.

C030 Quality of Service Metrics

The quality of service (QoS) legitimate clients connected to an edge cloud experi-

ence while this edge cloud is being attacked. Proper metrics to quantify QoS that

distinguish di�erent mitigations or their con�guration settings have to be found.

This is a requirement because the main reason why DDoS mitigations are run on

edge clouds will be to be able to continue providing service to legitimate clients

while being attacked. This is why metrics about the provided service during

attacks is an important benchmark on the e�ectiveness of the DDoS mitigation.
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4.4. Technical Requirements

In the following I will list any other requirement for the evaluation framework.

D010 Reproducibility

The results of the framework have to be reproducible. Because various parts of

the framework purposely include randomness (e.g. choosing the insiders from

all clients at random), this means that the framework will need to run multiple

iterations of a con�guration with their average as the �nal result. This also means

that the framework has to ensure a clean state between iterations, making sure

one iteration do not in�uence another.

This is required because only reproducible results are useful in an evaluation of

the mitigations.

D020 Con�gurability

All settings for the framework, the mitigation and the attacker have to be easily

con�gurable in a single place. Additionally, runs with di�erent con�gurations

after another without interaction have to be possible.

Because iterations can take some time, and a run (multiple iterations with same

con�guration) even more, a common usage will run the framework on a remote

server with interaction cut to a minimum.

D030 Hard-failing and extensive logging

An error during an iteration should always lead to the fail of the entire iteration,

but should be documented.

This is because a result which is based on an iteration where an error occurred

should always be ignored since the result cannot be considered correct anymore.

D040 Infrastructure tests

At the start of an iteration, the framework should run tests to make sure the

infrastructure is properly setup and the con�guration is valid.

This is a requirement because not testing the infrastructure could mean that the

iteration is run on improperly con�gured infrastructure which would invalidate

a result.
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D050 Required resources

The resources the framework requires to run should be limited.

Although the framework aims to model an infrastructure with multiple distributed

clients, the framework should not require the same amount of resources, but

instead be able to run on one single (quite powerful) client.

D060 Pluggability and Extandability

The framework has to be able to support multiple mitigations and attack patterns

and therefore should provide an API to be used. Mitigations and attacker patterns

should be able to be modi�ed and added without any changes to the core of the

framework.

This allows future mitigations or attacker patterns to be added and compared

against current mitigations and attacker patterns easily.

4.5. Limitations

There are some things that I do not expect my framework to do. They are listed below.

No attack detection Because detecting whether there is currently an attack is a whole

other topic for itself and I want to evaluate mitigations not detections, attack

detection is not part of the framework. Instead, I assume that an attack is reliably

detected after a con�gurable timespan.

No new clients I assume a �xed number of clients that already know an initial network

address to reach the edge cloud. Implementing a service discovery that gives

out routing information to new clients while protecting against attackers and is

attack-resilient is not straightforward and not the goal of this thesis.

23





5. Design

This chapter documents the design of the framework and how it ful�lls all requirements.

The evaluation framework developed here will be referred to as dmef, short for DDoS

mitigation evaluation framework.

When dmef is run, it starts by creating a model of an edge cloud infrastructure

environment. In this environment, all devices that would play a role in a real-world

edge cloud environment are modeled individually. This includes the edge cloud which

is modeled with its limited resources (A010) including limited bandwidth (A020) and

is setup to use IPv6 (A030). It also includes a routing infrastructure that connects all

modeled devices and can route known attack tra�c into a blackhole (A040) as well as

clients that are connected to the edge cloud using migrateable connections (A050). The

model environment also includes a limited number of attackers (B030) with su�cient,

but limited resources (B010) that can send �ooding attack tra�c to the edge cloud

(B040).

After dmef has setup the model environment, it performs a series of tests on it (D040).

Then, the mitigation to be tested is loaded dynamically (D060) and is setup on the

infrastructure. When the setup is complete, a con�gured limited number of clients is

elected to be insiders (B020) and the benchmarking is started. The con�gured attack

pattern is then in charge of directing the attackers to send attack tra�c to the edge

cloud through the addresses known to it through the insider. Shortly after an attack

is started, it is the mitigation’s job to mitigate the attack and to make any changes

Figure 5.1.: dmef components and their interactions
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it decides on to the routing before the attack pattern can once again decide which

addresses to attack. This process repeats itself until the mitigation has identi�ed all

insiders and the attack pattern has run out of addresses to attack. This is when the

benchmarking is stopped and the metrics are calculated. These metrics include the

number of required rounds (C010), the number of used addresses (C020), the time with

interrupted service and it’s percentage of the entire runtime (C030). Afterwards, the

infrastructure is cleaned up, to allow for reproducibility (D010) and the entire process

is restarted when con�gured to do so. The di�erent mentioned components of dmef

and their interactions are displayed in Figure 5.1.

A number of di�erent attack patterns (B050, D060) including ones that use insider

information about the mitigation in order to try to outmaneuver it (B060) can be

con�gured to be used as well as all other parameters of the evaluation (D020). The

entire time, occurring errors lead to fail of the iteration, logging the error in the process

(D030).

Figure 5.2 also shows the process of running a con�guration on dmef.
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Figure 5.2.: Evaluation process
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In this chapter, I want to dive deeper into the di�erent parts of dmef and show how

they are implemented and explain why they were implemented this way.

6.1. The controller

The dmef controller is the central implementation of the framework logic. It handles

input/output, sets up the infrastructure, loads and runs the mitigations and attack

patterns, handles the benchmarking and logging and cleans up in the end. The controller

is implemented as a number of object-oriented python classes running in a docker

container [17] to reduce software requirements and increase portability. See Figure 6.1

for an overview of the controller classes.

Most importantly, the controller provides the API for mitigations and attack pat-

terns and loads them dynamically. Mitigations and attack patterns are python classes

inheriting a speci�c abstract class that implement speci�c methods. The methods to

be implemented and the API that dmef provides these classes is documented in the

dmef documentation. This allows more mitigations and attack patterns to be added

seamlessly and existing ones can be modi�ed on their own, not requiring changes to

the core framework (D060).

The controller also handles the input and output of the framework. If dmef is run

without an argument, an interactive shell is provided where con�guration settings can

be set, mitigations initialized and attacks run. The framework makes sure to clean up

any containers or networks set up when quitting dmef. Alternatively, dmef can be

run with an argument which is the �lename of a con�guration �le which speci�es all

con�guration options including number of iterations, the mitigation and the attack

pattern (D020). A con�guration �le can also include multiple sets of con�guration

options which will be run after another. Listing 6.1 shows an example for a con�guration

�le.

The controller interacts with other docker containers by opening a shell in them

using the docker exec-environment. While a HTTP-API would have been possible, this

might have lead to problems when an interaction was required while a DDoS attack

was in process where packets are potentially lost.
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Figure 6.1.: Overview over dmef controller classes

Listing 6.1: con�g.yaml

−−−
− i t e r a t i o n s : 20

a t t a c k e r s : 3

i n s i d e r s : 3

c l i e n t s : 25

m i t i g a t i o n : molehunt

a t t a c k : onea tonce

m o l e h u n t _ s p l i t s i z e : 2

− i t e r a t i o n s : 20

a t t a c k e r s : 3

i n s i d e r s : 3

c l i e n t s : 25

m i t i g a t i o n : motag

a t t a c k : onea tonce

motag_proxycount : 1

m o t a g _ p r e a l l o c a t e d p r o x i e s : 0

6.2. Infrastructure

The design of the infrastructure that the framework sets up is based on the proof-of-

concept of Mole Hunt [12]. The proof-of-concept setup infrastructure using docker

containers for edge cloud, clients and routing and then made a single mitigation round

where clients were migrated to a new address. There were no actual attacks, no

benchmarking, no way to con�gure options or to change the mitigation and more

things missing that my framework includes.
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Figure 6.2.: Docker infrastructure setup by dmef [12]

Like the proof-of-concept, dmef uses docker containers to model any device in the

edge cloud environment, namely the edge cloud itself, the blackhole, the clients, the

attackers and the routers [17]. Together with the docker containers, docker networks

are used to connect docker containers which are able to communicate with another

and to assign them network addresses. All device containers are connected via routing

containers which represent the internet routing infrastructure. They allow for dynamic

routing which means that the mitigation can change the routing (A040). See Figure 6.2

[12] for a visual representation of the infrastructure dmef sets up. Connecting lines

between containers represent that they are connected via a docker network, the network

address of a container in this network is noted on the line.

Every type of device modeled also uses a dedicated docker image for its containers.

A customization to this images can be done by basing a new image on the default ones

and adding a new docker image layer. This allows for easy modi�cation or extension of

the infrastructure (D060).

6.3. Technologies

Similar to the basic infrastructure, most technologies used in dmef are taken over from

the Mole Hunt proof-of-concept implementation. This had the advantage that I already

knew those technologies worked in this context and that base con�gurations were

already available to be used and adapted.
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dmef uses docker to model devices and networks because its grade of virtualization

allows us to almost always treat individual devices as dedicated bare-metal devices

while dramatically reducing the number of required resources (D050) [17]. This means

that while one can easily run up to 100 docker containers on a single machine, every

e.g. client can be used and accessed as if it was an actual dedicated edge cloud client

and the software run on these clients can be the same that is on run on actual clients.

The controller, as well as other software parts of dmef, are written in python because

it has a docker module, I was comfortable at using it and the Mole Hunt proof-of-concept

was written in it.

For the routing infrastructure that is set up by dmef, the routers run bird [5] and

communicate via the OSPF (Open Shortest Path First) protocol [27]. Additionally, for

the incoming edge cloud routing, the edge cloud announces and withdraws addresses

using exaBGP [6] and the Border Gateway Protocol (BGP) (Mole Hunt only) (A040)

[26]. For outgoing edge cloud tra�c, dmef is using nftables [8] for the correct network

address translation (NAT). All these are standard tools in networking which is why

they were chosen.

For the application tra�c, I am using QUIC [18], a new transport protocol based on

UDP [25], and its python implementation aioquic [7] because it supports the migration

of connections to new network addresses (A050). While this connection migration

feature works seamlessly when the client of a connection changes network addresses,

it does not when the server changes addresses. This is why in dmef, the edge cloud is

always the client of a connection, after all edge clouds are expected to be both clients

and servers depending on the service. Additionally, since the application is continuously

sending a ping back and forth and logging its dates, being the client only means that

the edge clouds initiates the connection and makes no di�erence while the connection

is running.

6.4. Attack tra�ic

In scienti�c research, attack tra�c is usually generated in one of two ways. One of

which being that actual attack tra�c is recorded at one point and then replayed at

another, meaning the attack tra�c is actual attack tra�c, but this obviously brings up

the question on where to record attack tra�c [22, p. 3�]. The other is synthetic attack

tra�c which is created based on sophisticated models taking account of the application

and transport protocols of the application which is a resource-intensive procedure [15,

p. 1f]. In the real world, the tools that are used to conduct actual DDoS attacks tend

to be much more straightforward. For example, High Orbit Ion Cannon (HOIC) is a

tool that is for example used by the group Anonymous [16]. It works by sending a �ood

of well-formed legitimate-looking HTTP-GET or POST requests to the target server.
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This shows that real world attacks are more about brute-forcing with large number of

packets rather than sophistication.

In my framework, sophisticated attack tra�c is not needed since there are no �lters

or similar mitigations that could easily defend against trivial attack tra�c. Also, since

attack detection is not part of the framework and the detection is manually triggered

anyway, the only objective of the attack tra�c is to actually exhaust resources, namely

the edge cloud bandwidth and edge cloud processing power, which can be achieved

with any tra�c as long as it is enough. This makes the only requirements for the attack

tra�c generation IPv6-support and performance, meaning the ability to create large

number of packets. In dmef I am using a modi�ed version of open-source THC IPv6

attack toolkit [13] written in C which ful�lls these requirements and can produce about

4000 packets per second per attacking docker container. During my initial testing I �nd

that this su�cient for overwhelming the edge cloud and does severely impact quality

of service for legitimate users.

6.5. Limiting bandwidth

According to the requirements, edge clouds have signi�cantly limited bandwidth (A020).

When setting up the infrastructure using docker, all containers essentially have the

same bandwidth which is limited by the host’s resources. To model the edge cloud’s

limited bandwidth, I arti�cially limit its network link to the edge cloud router, see

Figure 6.3 for the link in question. I do this by limiting a speci�c network interface

on the docker host which one can �nd based on the docker network name and docker

container name. To do this, the controller container has to be in the docker host network

and requires the NET_ADMIN capability. On the speci�c network interface, dmef then

imposes a queue limit using tc [14].

6.6. Bechmarking and Metrics

As required, dmef counts the number of required rounds as well as the number of used

addresses (C010 & C020).

For the QoS metric, I initially planned to use both latency as well as package loss

percentage for packages sent between clients and the edge cloud (C030). This however

turned out not to be ideal for two reasons. Firstly, the way the continuous connection

between clients and edge cloud is implemented is that a ping message is sent back

and forth with one being sent right after the preceding one was received. To properly

measure the latency or package loss however, pings would have to be sent at a constant

interval. This would require us to asynchronously send and receive pings, paying

attention to sequence numbers, which is not supported out-of-the-box by the aioquic
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Figure 6.3.: Docker network links

Green links are assumed to have unlimited bandwidth and red links have limited bandwidth

which results in them possibly being overwhelmed and are therefore manually limited by dmef.

Orange links also have limited bandwidth, but are either not expected to be overwhelmed or

overwhelming does not impact legitimate clients.

library. Additionally, QUIC automatically retries packages that were not received, which

would result in the number of dropped QUIC pings being zero. Secondly, my initial tests

showed that during the time that a DDoS �ooding attack was active and not mitigated,

basically no legitimate packets would make it to the edge cloud. This would mean that

during this time, latency is in�nite and package loss is 100%.

Instead, I introduce new metrics called Time with Interrupted Service (twis) and Time

with Interrupted Service as Percentage of entire runtime (twis%). twis is the amount of

time in seconds that pings get not returned by the edge cloud within the edge service

limit. twis% is de�ned as twis divided by the entire runtime of the iteration in dmef

from start of benchmarking to end of benchmarking as a percentage.

I calculate twis from the raw quic log for every client separately, see Listing 6.2 for

an example. First I check if at any point the client and the edge cloud lost connection

and the connection was restarted. If this happened, the time without a connection

is considered time with interrupted service. Additionally, I consider the runtime of

every ping with a runtime above a threshold as time with interrupted service. This

threshold is de�ned as the highest runtime within the lowest 90% of runtimes plus

its di�erence to the mean of the lowest 90% of runtimes. This calculation is visually

shown in Figure 6.4. The sum of these times is the twis for this client. The twis% for

this client is this twis divided by the runtime, de�ned as starttime plus runtime of last

ping minus starttime of �rst ping. Lastly, I calculate the averages for twis and twis%

over all legitimate clients for an iteration, as well as the sum of all legitimate clients

twis. Finally, I have the results for an iteration, for an example see Listing 6.3.
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Figure 6.4.: Calculation of twis

Shown is a histogram of the runtimes of all measured QUIC pings of one client in one iteration.

Note, that right-most bar includes all runtimes over 0.145s, including multi-second
runtimes during attacks. The highest runtime of the lowest 90% of runtimes (blue) is marked

in orange, their mean is marked in green. The threshold (magenta) is the highest runtime

(orange) plus the di�erence between it (orange) and the trimmed mean (green). The sum of all

runtimes over the threshold (red) is considered the time with interrupted service (twis).

Listing 6.2: quic-raw.log

[ . . . ]

2020−05−15 1 7 : 5 8 : 4 2 , 6 8 8 INFO c l i e n t h o s t ; seq ; s t a r t t i m e ; runt ime

[ . . . ]

2020−05−15 1 7 : 5 8 : 4 6 , 0 9 3 INFO c l i e n t 1 0 0 3 : : 1 0 ; 1 7 ; 1 5 8 9 5 6 5 5 2 6 . 0 8 7 3 6 6 3 ; 0 . 0 0 5 8 3 9 3 4 7 8 3 9 3 5 5 4 6 9

2020−05−15 1 7 : 5 8 : 4 6 , 1 9 9 INFO c l i e n t 1 0 0 3 : : 1 0 ; 1 8 ; 1 5 8 9 5 6 5 5 2 6 . 1 9 5 9 2 2 ; 0 . 0 0 3 1 8 4 5 5 6 9 6 1 0 5 9 5 7 0 3

2020−05−15 1 7 : 5 8 : 4 6 , 3 1 6 INFO c l i e n t 1 0 0 3 : : 1 0 ; 1 9 ; 1 5 8 9 5 6 5 5 2 6 . 3 0 5 4 4 8 3 ; 0 . 0 1 0 9 2 3 3 8 5 6 2 0 1 1 7 1 8 8

2020−05−15 1 7 : 5 8 : 4 6 , 4 3 5 INFO c l i e n t 1 0 0 3 : : 1 0 ; 2 0 ; 1 5 8 9 5 6 5 5 2 6 . 4 2 9 9 7 5 5 ; 0 . 0 0 5 6 6 9 5 9 3 8 1 1 0 3 5 1 5 6

2020−05−15 1 7 : 5 8 : 4 6 , 5 3 8 INFO c l i e n t 1 0 0 3 : : 1 0 ; 2 1 ; 1 5 8 9 5 6 5 5 2 6 . 5 3 5 9 9 1 7 ; 0 . 0 0 2 2 1 2 2 8 5 9 9 5 4 8 3 3 9 8 4

[ . . . ]

Listing 6.3: result.log

Used Ad d re s se s : 21

Rounds r e q u i r e d : 13

Sum t i m e _ t o _ a t t a c k _ d e t e c t i o n 130 s

Sum t i m e _ b e t w e e n _ a t t a c k s 520 s

c l i e n t tmean f a s t / s low t w i s / t w i s%

c l i e n t 0 0 . 0 2 9 s 4 0 6 5 / 4 4 3 5 8 . 6 9 s / 3 9 . 7 5 %

c l i e n t 1 0 . 0 2 9 s 3 8 9 9 / 3 2 3 7 9 . 4 3 s / 4 2 . 1 1 %

c l i e n t 2 0 . 0 3 2 s 3 2 9 1 / 3 3 4 5 2 . 3 9 s / 5 0 . 1 5 %

c l i e n t 3 0 . 0 2 8 s 4 1 8 6 / 3 9 3 4 5 . 3 3 s / 3 8 . 3 %

c l i e n t 4 0 . 0 3 3 s 3 3 7 7 / 3 4 4 3 7 . 8 1 s / 4 8 . 5 4 %

c l i e n t 5 0 . 0 2 8 s 4 1 4 1 / 3 9 3 5 1 . 8 4 s / 3 9 . 0 8 %

c l i e n t 6 0 . 0 3 s 3 5 1 4 / 3 6 4 2 9 . 4 8 s / 4 7 . 6 1 %

c l i e n t 7 0 . 0 3 1 s 3 7 9 7 / 3 7 3 8 9 . 0 2 s / 4 3 . 1 2 %

c l i e n t 8 0 . 0 3 s 3 5 5 2 / 3 3 4 2 2 . 6 7 s / 4 6 . 9 3 %

c l i e n t 9 0 . 0 3 1 s 3 5 2 4 / 3 6 4 2 3 . 1 1 s / 4 7 . 0 %
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c l i e n t 1 0 0 . 0 2 7 s 4 3 1 4 / 3 9 3 3 4 . 4 6 s / 3 7 . 0 9 %

c l i e n t 1 1 0 . 0 2 8 s 3 6 5 4 / 4 0 4 1 6 . 4 6 s / 4 6 . 2 2 %

c l i e n t 1 3 0 . 0 2 9 s 3 4 2 9 / 3 2 4 4 2 . 9 3 s / 4 9 . 1 8 %

c l i e n t 1 4 0 . 0 3 1 s 3 7 1 8 / 3 6 3 9 7 . 3 7 s / 4 4 . 1 2 %

c l i e n t 1 5 0 . 0 3 s 3 9 2 0 / 3 8 3 7 3 . 7 2 s / 4 1 . 4 5 %

c l i e n t 1 6 0 . 0 3 s 3 6 1 2 / 3 4 4 1 2 . 1 5 s / 4 5 . 8 %

c l i e n t 1 7 0 . 0 3 s 3 4 3 0 / 3 2 4 3 8 . 4 2 s / 4 8 . 6 4 %

c l i e n t 1 8 0 . 0 2 7 s 3 4 9 6 / 3 3 4 3 8 . 5 9 s / 4 8 . 7 2 %

c l i e n t 2 0 0 . 0 2 9 s 4 1 2 2 / 3 9 3 5 2 . 0 4 s / 3 9 . 0 5 %

c l i e n t 2 1 0 . 0 3 1 s 3 5 8 4 / 2 9 4 1 4 . 6 2 s / 4 6 . 0 3 %

c l i e n t 2 2 0 . 0 3 s 3 9 3 3 / 3 7 3 7 1 . 1 8 s / 4 1 . 1 9 %

c l i e n t 2 4 0 . 0 2 8 s 4 2 0 0 / 4 1 3 4 3 . 2 s / 3 8 . 1 3 %

AVG 0 . 0 3 s 3 7 6 1 . 7 3 / 3 6 . 0 5 3 9 6 . 5 9 s / 4 4 . 0 1 %

SUM − 8 2 7 5 8 / 7 9 3 8 7 2 4 . 9 s /−

6.7. Infrastructure tests

At the beginning of each iteration, the infrastructure is tested to make sure the setup

was successful. This is done by �rst making sure that all clients can connect to the edge

cloud. Then an attack is started where DDoS attack tra�c is send to the edge cloud

without starting any mitigation. dmef makes sure that the service is then impacted by

the attack by expecting at least one in �ve connection attempts to fail. dmef then stops

the attack and after a short wait makes sure that all clients are able connect again.

6.8. Mitigations

For documentation on how and why these mitigations work, refer to chapter 3 or the

original papers on these mitigations. This section is providing insight into how the

mitigations are implemented on dmef.

I decided to only implement Mole Hunt and MOTAG because these two both di�er

in their algorithms as well as in the technologies used. DoSE uses the same proxy

setup as MOTAG but with a di�erent algorithm, comparisons using simulations are

therefore su�cient and have already been done. Catch Me If You Can also uses the

MOTAG greedy algorithm and its di�erent technology makes it an un�t candidate for

edge clouds.

6.8.1. Mole Hunt

I once again refer to the proof-of-concept implementation of Mole Hunt [12].

During the post-infrastructure setup phase, additional Mole Hunt speci�c services are

started and con�gurations modi�ed. For example, exaBGP to announce and withdraw

network addresses is con�gured and setup, the default network address removed, a

new default address (in the proper subnet) is announced, the edge cloud is set up to

accept tra�c addressed to any address in the subnet and NAT rules are set up.
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Figure 6.5.: Example of remerging in Mole Hunt

When the edge cloud is attacked, for every attacked network address, this address is

�rst withdrawn via exaBGP and then the connected clients are handled. This means that

if only one client was connected to an address, this client was an insider and is banned

from accessing the edge cloud in the future. If more than one client is connected to an

attacked address, splitsize-many new random addresses are generated and announced

via exaBGP and the clients are then randomly divided into splitsize-many equal-size

groups which are assigned to the new addresses. If less then splitsize-many clients

were connected to an address, every client is assigned a dedicated new address but no

additional addresses are announced. Assigning to a new address means removing the

old NAT con�guration for the client, updating its routing information and setting a

new NAT con�guration.

New in my implementation is the remerging strategy which is based on ideas by the

Mole Hunt author. During each round of mitigations, new addresses are announced,

the routing table gets larger and the number of connected clients per address decreases.

Remerging means that clients are redistributed along a smaller number of addresses

when no attacks are happening in order to lower the number of used addresses and

shrink routing tables. I expect that remerging happens after no attacks have happened

for a longer period of time and the mitigation expects to have caught all insiders. There

are a variety of di�erent strategies on how to redistribute the clients including just

using a single address for all clients or using equal sized groups. I want to however

anticipate that attackers might be aware of the strategy and purposely wait until the

mitigation remerges in order to avoid the isolation of the insiders and only attacking

when an address is used by a larger group of clients.

That is why I want to preserve the isolation progress while remerging as much as

possible. This is done by assigning every client a risk factor which is de�ned as 1

divided by the number of clients connected to the same address. This means that a

client that has an address on its own, has a large risk, namely 1 while 20 clients that

share an address each have the lower risk of 0.05. Then, two groups with an address
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each are created, a group of lower risk clients and a higher risk group, so that the

cumulative risk for each group is about equal. This creates a group of many clients with

a low risk, meaning that the probability of an insider being part of this group is low

and group of clients the mitigation suspects might be insiders. When dividing groups,

additional clients may be added to the higher risk group when there is already a client

with the same risk value in the high risk group and the number of clients does not rise

so high that based on the splitsize more rounds are required to identify an insider. See

Figure 6.5 for an example on how remerging works.

6.8.2. MOTAG

In the post-infrastructure setup phase in MOTAG, instead of setting up exaBGP like in

Mole Hunt, additional proxy containers with random network addresses are created

that forward their incoming tra�c to the edge cloud. The number of proxies that are

setup in this phase is con�gurable as initial proxies. The initial routing assigns each

proxy an equal number of clients to handle or in case of only one initial proxy assigns

all clients to it.

When the edge cloud is attacked, MOTAG mitigates by �rst removing all proxies that

handled attack tra�c. If any proxy removed only handled one client during the attack,

that client is an insider and is banned from accessing the edge cloud in the future. If

not new proxies are created to be used as shu�ing proxies, up to one for every proxy

removed plus one additional. Using the MOTAG greedy assign algorithm [19, p. 5] any

client that was connected via a proxy that is now removed is then assigned to one of

the new shu�ing proxies. The algorithm requires an assumption about the number

of insiders for which the number of addresses attacked during this round is provided

since this is a lower limit.

dmef allows the pre-allocation of proxies which means that the docker containers

for proxies are created but not used at the beginning, and not only when they are

needed. The number of pre-allocated proxies is con�gurable and defaults to zero. After

all pre-allocated proxies are all used, MOTAG returns to creating the containers just

when they are needed. Pre-allocation is useful because the creation and removing of

containers is time-intensive which could mean that mitigations are more e�ective when

more proxies are pre-allocated.

I planned on making the number of additional proxies per round con�gurable instead

of always being one, but this lead to problems. Speci�cally, in the most common

case, only one insider is assumed which means that the greedy algorithm will always

distribute all clients along only two proxies with the exception of an uneven number

of clients where a single client will be assigned to a third proxy. This of course is

unexpected behavior and I therefore removed the option.

MOTAG does not include a remerging strategy.
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6.9. Attack patterns

I implement both simple and sophisticated attacker patterns that potentially have insider

information on the mitigation strategies and con�guration options. In this section, I

will give an overview over how these attack patterns work. Note that attack patterns

that take advantage of mitigations remerging clients will only be tested with Mole Hunt,

not with MOTAG.

6.9.1. AllAtOnce

This is the most straightforward attack pattern. It simply attacks all the network

addresses that are known to it through the insiders.

Because of the abstraction and API that dmef provides, such a simple attack pattern

can be implemented in dmef using only the four lines shown in Listing 6.4.

Listing 6.4: allatonce.py

from . . a t t a c k import B a s e A t t a c k

c l a s s a l l a t o n c e ( B a s e A t t a c k ) :

def run_round ( s e l f , round_no ) :

s e l f . a t t a c k ( l i s t (map ( lambda x : s e l f . dmef . r o u t i n g [ x ] , s e l f . i n s i d e r s ) ) )

6.9.2. OneAtOnce

This attack pattern works similarly, but instead of attacking all known addresses at once,

it only attacks one of the known addresses per round. This increases the number of

rounds required and therefore also the number of used addresses because the mitigation

learns less about the insiders per round.

6.9.3. EvadeIsolation

This is a more sophisticated attack pattern. It requires knowledge about the mitigation,

the con�gured splitsize and an approximation of the number of clients connected to

the edge cloud. Based on this information, the pattern calculates the number of rounds

it takes the mitigation to identify an insider and then attacks one round less, then

waits for the mitigation to remerge to repeat the pattern. Since this is useless without

remerging it is only tested on Mole Hunt. On Mole Hunt the number of rounds required

to identify an insider is at least:

A>D=3B<8= = blog(?;8CB8I4 #D<14A$ 5�;84=CBc + 1

because n-ary search takes log= many steps to isolate and then one more round where

only one client is connected to the address where it is attacked to identify.
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After this calculation, the attack pattern then attacks one known address per round.

When the address an insider is connected to is attacked, its counter is advanced by one

even if this means multiple insider’s counters are advanced. When the counter of an

insider hits the pre-calculated maximum, its address is no longer attacked and when the

attack pattern has no more addresses to attack, it waits for remerging. After remerging,

it resets all insiders counters to one, not zero because there are already two groups not

a single one as in the beginning which is equivalent to one binary search step already

done.

This does not go on forever however because the remerging strategy does not remove

all progress made in identifying the insiders and so they are identi�ed eventually. The

number of rounds this attack pattern can survive varies more than the simpler ones

because the random choices in insiders and assignments have larger consequences.

For example, after the �rst remerge, the decision whether an insider is assigned in the

group of 6 or the group of 7 might result in the insider being identi�ed or not, leading

to an additional 4 or rounds or not.

6.9.4. SwitchingSets

This attack pattern expands on the idea of the EvadeIsolation pattern. Instead of only

knowing how the mitigation and splitting process works, SwitchingSets also knows

how the remerging process works and evades it. This is done by dividing the insiders

into two sets and then only attacking with one set until Mole Hunt remerges, then

switching the set of insiders until remerge and so on. Once again the knowledge of

how often attackers can attack before insiders get identi�ed and wait for remerging

when it becomes to dangerous is applied.

Having two sets means that the attack pattern can attack less often between remerges

since it has fewer insiders to work with, but because the other set of insiders did not

attack at all before a remerge, these clients are considered innocent and will most-likely

be placed in the large low risk group during a remerge. This means it can attack more

often because the insiders are in a larger group of clients.

In both EvadeIsolation and SwitchingSets the attack maximum is A>D=3B<8=−1 before

the �rst remerge, but while the maximum drops to A>D=3B<8= − 2 for EvadeIsolation

after the �rst remerge, it increases to A>D=3B<8= for SwitchingSets. If I were to keep the

maximum at A>D=3B<8= − 1 for SwitchingSets, my tests show that the attack pattern

would be able to attack forever and never get identi�ed.
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In this chapter I am going to use my new framework to evaluate the implemented DDoS

mitigations for edge clouds as well as the di�erent con�guration options.

7.1. Expectations

After I have conducted the experiments I want to check whether the results match

theoretical expectations. This allows an evaluation whether the results are logically

consistent and the framework works correctly. To do this, I present and explain ten

hypotheses in this section based on theoretical knowledge to be con�rmed by the results

later.

H1 The number of iterations made for each set of con�guration options (30) is
su�cient.

Since randomness is involved in multiple situations during an iteration of the

framework such as choosing the insiders, the metrics of iterations are expected to

vary. The more iterations are done, the more stable the results which are the mean

of all iterations will be. The number of iterations is considered su�cient when

the result’s variation when a new iteration is added is negligible which I expect

to be after a maximum of 30 iterations. This is also a result of the reproducibility

requirement (D010).

H2 The distribution of required rounds matches theoretical calculations.

If the algorithms of the mitigations are implemented correctly, the number of

rounds it takes the algorithms to identify insiders in the framework should match

theoretical calculations.

H3 More clients increase the number of required rounds and addresses.

Since more clients means more possible insiders, the algorithms require more

rounds to identify them. More rounds also always means more addresses.
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H4 InMole Hunt, a larger splitsize reduces required rounds but increases used
addresses.

A larger splitsize means less clients per address which means that when an address

is attacked there are less suspects which means that less rounds are required to

identify an insider. A larger splitsize also means that more new addresses are

announced each round which means more used addresses.

H5 In MOTAG, more initial proxies reduce the number of required rounds.

More initial proxies means that there are less suspected clients the �rst time a

proxy is attacked which means less rounds are required.

H6 In MOTAG, more pre-allocated proxies increase performance.

Since creating and removing proxies takes time, moving the proxy starting process

to the beginning increases performance during a round where usually a new

proxy would have to be created.

H7 More sophisticated attackers perform better.

Since the sophisticated attackers take account of how the mitigation works and

try to outmaneuver with their knowledge, they are expected to perform better

than the trivial attack patterns.

H8 For both MOTAG and Mole Hunt, twis% is consistent across con�guration
options.

Di�erent con�guration options mostly e�ect the number rounds required to

identify the insiders. During each round, the edge cloud is attacked and time with

interrupted service (twis) is detected which means that an increasing number of

rounds also means an increase in twis. An increasing number of rounds however

also means that the entire runtime increases. I expect that twis per round is

consistent for a speci�c mitigation as it is based on the technology used and does

not change with any of the con�guration options. Therefore I expect twis% to be

consistent across con�guration options.

H9 Mole Hunt andMOTAG’s algorithm perform comparably, but Mole Hunt’s
technology is superior.

Both algorithms essentially perform a binary search for the insiders which means

that perform similarly. Only MOTAG’s algorithm performs di�erently when

multiple proxies are attacked at the same time which only happens with one of

the attack patterns. On the technology side I expect that routing tra�c through

proxies, creating and removing proxies creates additional overhead that creates

additional time with interrupted service.
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Option Default Used Values

General options

Number of Clients 25
r

15
r

20
r

25
r

30
r

35
r

40

Number of Insiders 3
r

3

Number of Attackers 3
r

3

Attack Pattern OneAtOnce
r

OneAtOncer
AllAtOncer
EvadeIsolation (Mole Hunt only)r
SwitchingSets (Mole Hunt only)

Mole Hunt options

Splitsize 2
r

2
r

3
r

4
r

5

MOTAG options

Initial Proxies 1
r

1
r

2
r

3
r

4

Pre-allocated proxies 0
r

0
r

5
r

10
r

15

Table 7.1.: Con�guration options

7.2. Methodology

Because a single iteration usually takes about 20 minutes to run and there are lots of

con�guration options, I am not able to run every combination of options. Instead, I run

both Mole Hunt and MOTAG with default options and then vary all the options, but

only one option at a time. This means in every con�guration run all options are set to

their default except for one. This allows us to observe the results of every con�guration

option with a greatly reduced number of iterations required.

Table 7.1 shows all the con�guration options including the di�erent values tested and

the default value. I run every con�guration for at least 30 iterations so that individual

di�erences in runs only have a small impact.

7.3. Results

The full results of all runs and iterations can be found in the Appendix. In this section,

I want to show the default benchmark and compare it against other settings. Note that

whenever an errror bar is shown, it represents the standard deviation.
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7.3.1. Mole Hunt

The full default benchmark for Mole Hunt (25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern and Splitsize 2) can be found in Figure 7.1. You can see that rounds,

addresses and twis vary signi�cantly between iterations but match within one iteration

e.g. for one iteration they are all on the high end or all on the low end. You can also

see that all variations of these metrics are within a limited range and their standard

deviation is also limited. The twis% value is much more consistent across iterations.

These variations of the metrics are also shown in Figure 7.2. I compare di�erent

splitsizes in Figure 7.3. You can see that rounds and twis decreases with increasing

splitsize while twis% remains consistent and the addresses metric does not show a

clear trend. Di�erent number of clients are shown in Figure 7.4 where you can see that

increased number of clients result in increased number of rounds, addresses and twis

while twis% remains consistent. The di�erent attack patterns that were implemented

are compared in Figure 7.5. You can see that rounds, addresses and twis increases with

attack pattern sophistication while twis%’ trend is inconsistent.

7.3.2. MOTAG

In all MOTAG results, the information in brackets refers to the number of inital proxies

and the number of pre-allocated proxies, in this order. The default benchmark, which

is used as a basis for all comparisons, uses one initial proxy and has no pre-allocated

proxies (1-0). Di�erent numbers of inital proxies are compared in Figure 7.6. You can

see that an increased number of initial proxies results in a reduced number of rounds,

addresses and twis while twis% is consistent. Di�erent numbers of pre-allocated proxies

are compared in Figure 7.7. You can see that all metrics do not show a clear trend and

remain rather consistent across di�erent values for pre-allocated proxies. Di�erent

number of clients are compared in Figure 7.8 where you can see an increased number

of rounds and addresses for an increased number of clients while twis and twis% do not

show a trend. The di�erent attack patterns on MOTAG are compared in Figure 7.9. You

can see that MOTAG uses more addresses in less rounds and with a higher twis when

attacked using the AllAtOnce attack pattern than with the OneAtOnce attack pattern.

7.3.3. Comparison

A comparison of Mole Hunt and MOTAG is done in Figure 7.10. There, I also added

a version of MOTAG that uses address announcement and withdrawal using exaBGP

like Mole Hunt but still uses the MOTAG greedy shu�ing algorithm. You can see

that the number of required rounds and the number of used addresses is very similar

across mitigations while for twis and twis% only Mole Hunt and MOTAG-noproxy

show similar values and MOTAG shows much higher values.
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Figure 7.1.: Mole Hunt (Split Size 2) with 25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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Figure 7.2.: Boxplot of the metrics of the standard benchmark

Figure 7.3.: Comparing Mole Hunt Splitsizes

Figure 7.4.: Comparing number of clients in Mole Hunt
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Figure 7.5.: Comparing Attack Patterns on Mole Hunt

Figure 7.6.: Comparing di�erent numbers of inital proxies on MOTAG

Figure 7.7.: Comparing di�erent numbers of pre-allocated proxies on MOTAG
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Figure 7.8.: Comparing di�erent numbers of clients on MOTAG

Figure 7.9.: Comparing Attack Patterns on MOTAG

Figure 7.10.: Comparing Mole Hunt, MOTAG and a no-proxy MOTAG variant
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8. Evaluation

After having designed, implemented and used my new framework for DDoS mitigation

evaluation in the last chapters, I want to evaluate my framework in this chapter. To do

this, I will examine whether my results are logically consistent and match my theoretical

expectations and will compare dmef to related work, namely other methodology for

DDoS mitigation evaluation and other results.

8.1. Expectation evaluation

In this section I will examine the previously recorded hypotheses about the results

expected which were based only on the theoretical knowledge. When a hypothesis

matches the actually measured results this means that my framework and methodology

was logically consistent and matches theoretical expectations. When a hypothesis does

not match my results, I evaluate whether my theoretical thinking was incorrect and

why or whether my framework does not perform as expected.

H1 The number of iterations made for each set of con�guration options (30)
was su�cient.

To asses this, I ran the default benchmark for both Mole Hunt and MOTAG for

100 iterations rather than the standard 30. Figure 8.1 shows the deviation of my

measured metrics from the �nal metric. This is done by calculating the average of

the metric after each iteration only including the previous iterations. This means

that for every iteration, I now know how much the mean would have been o� if

I would have had stopped after this iteration. I can see that the values are very

stable after 30 iterations with only minor variations.

H2 The distribution of required rounds matches theoretical calculations.

Without loss of generality, I examine the default benchmark for Mole Hunt and

I will examine the theoretical distribution of the number of required rounds to

identify all insiders and compare it to the measured results. The �rst insider is

isolated after four or �ve rounds (;>6225 ≈ 4.64) and is identi�ed and blocked

after an additional round of being the single connected client on an attacked

address. To look at the probabilities of four or �ve rounds as well as the remaining

group sizes in which the other two insiders are, see Figure 8.2.
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Figure 8.1.: Deviation of metrics after x iterations to after all iterations

I �nd that the �rst insider is isolated after round 4 in 43.75% of cases and after

round 5 in 56.25% of cases. I also �nd that based on the group sizes of the

remaining clients after the �rst insider is isolated and identi�ed, the second and

third insider have a high probability of still being in a large group of clients. This

means that higher numbers of required rounds to identify all insiders have a

higher probability. At the same time, it is likely that after the �rst two insiders

have been identi�ed, the third insider was grouped together with another one

at least once where it did not necessarily have to which results in the most-

likely number of rounds required to identify all three insiders being 14 while the

maximum is 15. The minimum number of required rounds is 8 although this is

highly unlikely because it means that all three insiders were grouped together

as long as possible. In conclusion, my theoretical analysis shows that I expect

the number of required rounds to be in the interval [8, 15] with 14 being the

most-likely number of required rounds.

The actual measured distribution is shown in Figure 8.3. I �nd that it matches my

expected results with the only di�erence being that the minimum of 8 rounds

was never hit which is not surprising since this case is highly unlikely.

H3 More clients increase the number of required rounds and addresses.

I �nd in my results, that this is true for both Mole Hunt (Figure 7.4) as well as

MOTAG (Figure 7.8).
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Figure 8.2.: Analysis of the number of required rounds

The �rst part of the �gure shows the process of the �rst insider being identi�ed. Each orange

or blue bubble represents a group of clients that uses the same network address for the edge

cloud, the number in the bubble refers to the number of clients in this group. An orange bubble

represents the group of clients that the �rst insider is part of. The surrounding gray or purple

bubble represents a possible state in the insider identi�cation process. A purple bubble means

that the insider has been isolated in this state. The second part of the �gure shows the

probabilities for di�erent group sizes that the second insider is part of after the �rst insider is

identi�ed. The number within the blue bubble refers to the number of clients in the group and

the green number is the probability of the second insider being in a group of this size. The last

part of the �gure concludes the overall number of required rounds to identify all three insiders.
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Figure 8.3.: Histogram of required rounds in Mole Hunt (Split Size 2) with 25 Clients

and 3 Insiders running OneAtOnce-Attack Pattern

H4 InMole Hunt, a larger splitsize reduces required rounds but increases used
addresses.

I �nd that based on my results in Figure 7.3 that while larger splitsizes reduces

the number of required rounds there is no obvious trend for the number of used

addresses. Contrary to my expectation, I �nd that up to a splitsize of 4, the

number of used addresses actually also decreases because a reduced number of

rounds means there are fewer occurrences of addresses being announced. Only

for a splitsize of 5 I �nd the expected trend. I have to note though, that this is

heavily in�uenced by the relatively small number of clients in my test cases and

I expect that the splitsize with the lowest number of used addresses varies by the

number of clients and is not always 4.

H5 In MOTAG, more initial proxies reduce the number of required rounds.

I �nd this is true based on Figure 7.6.

H6 In MOTAG, more pre-allocated proxies increase performance.

This is incorrect based on Figure 7.7. There I cannot �nd any trend but rather

all results are within margin of error. This means that the delay it takes to setup

another proxy using docker is too small to be noticeable. Since actual imple-

mentations of MOTAG would not use docker to facilitate proxies, I recommend

testing pre-allocation of proxies on the target environment to see if the delay is

noticeable there.
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H7 More sophisticated attackers perform better.

I �nd this is true for Mole Hunt based on Figure 7.5. For MOTAG however,

OneAtOnce performs worse in used addresses and twis, while better in required

rounds than AllAtOnce from the viewpoint of the attacker, see Figure 7.9. Al-

though I would not necessarily call any of those two patterns sophisticated, this

shows that MOTAG’s algorithm handles attack scenarios with multiple insiders

at the same time very di�erently, using a lot more addresses but requiring fewer

rounds.

H8 For both MOTAG and Mole Hunt, twis% is consistent across con�guration
options.

I �nd that this is true with exceptions. Mole Hunt almost always achieves twis%

values of 38-40%, see Figure 7.1, Figure 7.3, Figure 7.4 and Figure 7.5. MOTAG’s

twis% is continuously between 48% and 55%, see Figure 7.6, Figure 7.7, Figure 7.8

and Figure 7.9. Only in the case of the AllAtOnce attacker, I �nd that twis% is

higher because the overall runtime is very low. This applies to both mitigations.

H9 Mole Hunt andMOTAG’s algorithm perform comparably, but Mole Hunt’s
technology is superior.

I �nd this is is true based on Figure 7.10. I examine the algorithms performance

based on the number of required rounds and the number of used addresses which I

�nd to be very similar across Mole Hunt and MOTAG. At the same time, I �nd that

twis and twis% are much higher for MOTAG than for Mole Hunt, showing that

Mole Hunt’s technology with announcing and withdrawing addresses via exaBGP

is superior to MOTAG’s proxies. I can also see this based on the MOTAG-noproxy

variant that uses MOTAG’s algorithm but Mole Hunt’s technology. MOTAG-

noproxy performs very similarly to Mole Hunt, showing that the algorithms

have similar results, but Mole Hunt’s technology reduces Time with Interrupted

Service.

8.2. Frameworkmethodology

In this section I want to compare how dmef works to other DDoS mitigation evaluations,

namely [22] and [15].

In [22], the authors include a number of requirements that DDoS mitigation evalua-

tions have to ful�ll before presenting their system that matches these requirements. I

want to �rst check whether dmef also ful�lls the named requirements and then examine

how some requirements were solved di�erently.

A �rst named requirement is that test scenarios are realistic and comprehensive

[22, p. 1f]. In dmef this was one of the main focus points which I solved by basing its
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implementation on the key characteristics of the edge cloud environment based on

theoretical knowledge and planned implementations to make dmef realistic. I create my

comprehensive tests by adding a variety of attack patterns from trivial to sophisticated

with insider knowledge. Another requirement are accurate and expressive performance

metrics [22, p. 2]. I solved this by measuring the number of required rounds which

allows an assessment on how quickly the mitigations defend against attacks and the

number of used addresses as the operational cost the mitigations require. Additionally,

the QoS metrics twis and twis% give accurate information on how damaging an attack is

and how well an attack is mitigated. The last named requirement is that the evaluation

methodology includes guidelines to describe a system’s security [22, p. 2]. While

this requirement is important for collaborative defenses, it is not an issue for the

mitigations evaluated in this thesis. Still, the attack patterns that take advantage of

insider information allow us to also evaluate the mitigations when their security might

be compromised.

The authors of [22] solve the requirement for realistic test scenarios by creating

automatic tools that extract the necessary information from real world infrastructures

and attacks. This includes attack tra�c and legitimate tra�c and network topologies.

While this, if it works, de�nitely creates a very realistic and comprehensive test scenario,

this was not necessarily the goal of dmef. For dmef the focus was on edge clouds which

is an infrastructure that does not yet exist in the real world. I also explained why dmef

does not require very realistic attack tra�c in chapter 6. And while dmef’s legitimate

tra�c is not very realistic, this would have been impossible because of the variety of

edge services that will be running on edge clouds.

For their performance metric, the authors of [22] examine high-level tasks that

legitimate users want to perform and whether their QoS requirements can be met by

the service under attack. The metric is the percentage of those transactions that do

not meet QoS requirements and that are therefore considered failed. Because this is an

application level metric, it would not have been possible to be implemented on dmef.

Additionally, it assumes that during attacks at least some transactions succeed which

my tests showed was not the case on dmef with the modeled edge cloud environment

where during attacks, no legitimate tra�c would be received.

In [15], the authors name �ve areas to carefully design for an e�ective evaluation of

DDoS defenses and show their �ndings in these areas. Firstly, in the area of attack mech-

anisms, the authors recommend to use one of some named scienti�c attack generation

tools. While dmef does not use one of the named tools, it uses a more recent IPv6-ready

tool that o�ers comparable features. Secondly, a number of tools for the generation of

legitimate tra�c are recommended, but those sophisticated tools would not have been

possible on dmef due to resource constraints as well as not bringing any advantage

over dmef’s simple legitimate tra�c. Thirdly, network topology is mentioned as an

important area to design which in the case of dmef is given by the edge cloud environ-
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Figure 8.4.: Evaluation of Mole Hunt [12, p. 5]

ment which is modeled. Fourthly, the authors recommend that the defenses should

be challenged with speci�cally crafted attacks that attack their weak points which is

done in dmef using the sophisticated attack patterns with insider knowledge. Last

but not least, [15] analyzes used metrics in DDoS defense evaluation and recommends

combining multiple tra�c base metrics into a meaningful DDoS-centric metric that is

observed to degrade during attacks which is exactly what I do in dmef with twis and

twis%.

8.3. Results comparison

In this section I want to examine how my results stack up against the results from the

mitigations’ self-evaluations. All of these self-evaluations only consider simulations of

the algorithms and do not consider the implementation. Therefore I only have results

for required rounds and used addresses and not for QoS metrics. Additionally, in those

simulations, a much larger number of clients is assumed, making comparisons hard.

MOTAG’s self-evaluation assumes that insiders always attack, as in dmef’s AllAtOnce

attack pattern [19, p. 6f]. Contrary to my �ndings, the evaluation assumes that an

attacked proxy means that only clients connected to this proxy experience a DoS and

not every client connected to the application. This also means that clients can be

saved from the attack before an insider is �nally identi�ed. That is why MOTAG’s

self-evaluation shows the number of required shu�es to save 80% or 95% of clients not

100% like in dmef. Nevertheless, I �nd that the trends shown in the self-evaluation of

MOTAG align with the trends observed in my results. Additionally, MOTAG evaluates

the overhead introduced by proxies, but since this assumes proxies are geographically

distributed from each other as well as the application, this is not comparable to my

setup and would defeat the purpose of edge clouds.
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Mole Hunt’s self-evaluation also assumes that attackers attack all addresses known

to insiders every round, as in dmef’s AllAtOnce attack pattern [12]. Their evaluation

also measures maximal concurrently used addresses rather than overall used addresses

like in dmef. When I compare Figure 7.3 and their results for Mole Hunt, see Figure 8.4

[12, p. 5], I �nd that both absolute values as well the trends match. However, I do

not see similar results for MOTAG. While I �nd similar results in terms of algorithm

performance for Mole Hunt and MOTAG in dmef, see Figure 8.4, Mole Hunt’s self-

evaluation [12, p. 5] shows very di�erent results. This is because MOTAG’s greedy

algorithm gets provided with an assumption about the number of insiders. In Mole

Hunt’s evaluation this assumption is always set to 1, assuming the mitigation’s worst

situation, even when multiple addresses get attacked at the same time which is common

in the AllAtOnce attack pattern. In dmef this assumption is instead set to the number

of attacked addresses since this is lower bound for the number of insiders. This results

in a much more plausible and realistic performance of MOTAG in dmef’s evaluation.
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In this chapter, I want to present the conclusions that can be drawn from my newly

created DDoS mitigation evaluation framework.

When comparing the two implemented DDoS mitigations, Mole Hunt and MOTAG,

I �nd that Mole Hunt is decisively superior. In fact, Mole Hunt shows a variety of

advantages and no obvious disadvantages over MOTAG. I �nd that on the technology

side, announcing and withdrawing addresses using exaBGP instead of using proxies that

forward tra�c not only saves computing power and makes it more edge cloud friendly,

it also reduces the e�ects of DDoS attacks, namely degraded quality of service. On the

algorithm side, I �nd that in my test cases, the two shu�ing algorithms behaved very

similarly not giving an advantage to any of the two defense strategies. Additionally,

Mole Hunt’s splitsize con�guration option allows the mitigation to be more tuned

towards a speci�c use case, trading required rounds versus used addresses. I however

propose MOTAG to be adapted to also support a con�gurable number of additional

proxies per round instead of being �xed to one per round.

Mole Hunt also performs fairly well against sophisticated attackers, but it also shows

that its remerging strategy still needs to be improved. It can very well be argued that

when a su�ciently long timeout before remerging is in place, any attack pattern trying

to evade isolation would be very limited. Also, the predictions this kind of attack pattern

has to make are very di�cult in dynamic real world scenarios, requiring the pattern to

be very conservative in its estimation, limiting attacks. Still, the fact that a slightly more

conservative SwitchingSets attacker would be able to continue attacking in�nitely is a

sign for concern. Possible improvements could include randomly varying the splitsize

to make predictions about the number of rounds until isolation harder or adapting the

remerging strategy to pass along more information and potentially at some point ban

clients that are not 100% guaranteed to be insiders but only with a high probability.

In general, I �nd that both Mole Hunt and MOTAG work well to eventually stop

DDoS attacks against edge clouds. During the mitigation process however, clients still

experience signi�cant quality of service degradation. This is mostly caused by the

delay in attack detection which means that a very fast and precise attack detection

mechanism is favorable for use in edge clouds. I �nd that the migration process from

one network address to another is fast and seamless, especially using Mole Hunt.

In a nutshell, moving target defenses like Mole Hunt are a promising DDoS defense

strategy on edge clouds, but there are still some improvements to be made.
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A. Appendix

A.1. Full Results

This section includes the results of every iteration of every run made with dmef that

was used in chapter 7, chapter 8 or chapter 9. The results are ordered by mitigation

name (Mole Hunt, MOTAG or MOTAG-noproxy), their con�guration options (splitsize

or con�guration tuple), the attack pattern (AllAtOnce, EvadeIsolation, OneAtOnce

and SwitchingSets) and the number of clients, each in ascending order. See the List of

Figures at the beginning of this thesis for a table of contents.

63



A. Appendix

Figure A.1.: Mole Hunt (Split Size 2) with 25 Clients and 3 Insiders running AllAtOnce-

Attack Pattern
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A.1. Full Results

Figure A.2.: Mole Hunt (Split Size 2) with 25 Clients and 3 Insiders running

EvadeIsolation-Attack Pattern
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A. Appendix

Figure A.3.: Mole Hunt (Split Size 2) with 15 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A.1. Full Results

Figure A.4.: Mole Hunt (Split Size 2) with 20 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A. Appendix

Figure A.5.: Mole Hunt (Split Size 2) with 25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A.1. Full Results

Figure A.6.: Mole Hunt (Split Size 2) with 30 Clients and 3 Insiders running OneAtOnce-

Attack Pattern

69



A. Appendix

Figure A.7.: Mole Hunt (Split Size 2) with 35 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A.1. Full Results

Figure A.8.: Mole Hunt (Split Size 2) with 40 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A. Appendix

Figure A.9.: Mole Hunt (Split Size 2) with 25 Clients and 3 Insiders running

SwitchingSets-Attack Pattern
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A.1. Full Results

Figure A.10.: Mole Hunt (Split Size 3) with 25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A. Appendix

Figure A.11.: Mole Hunt (Split Size 4) with 25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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A.1. Full Results

Figure A.12.: Mole Hunt (Split Size 5) with 25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern

75



A. Appendix

Figure A.13.: MOTAG (1-0) with 25 Clients and 3 Insiders running AllAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.14.: MOTAG (1-0) with 15 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A. Appendix

Figure A.15.: MOTAG (1-0) with 20 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.16.: MOTAG (1-0) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A. Appendix

Figure A.17.: MOTAG (1-0) with 30 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.18.: MOTAG (1-0) with 35 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A. Appendix

Figure A.19.: MOTAG (1-0) with 40 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.20.: MOTAG (1-5) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A. Appendix

Figure A.21.: MOTAG (1-10) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.22.: MOTAG (1-15) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A. Appendix

Figure A.23.: MOTAG (2-0) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.24.: MOTAG (3-0) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A. Appendix

Figure A.25.: MOTAG (4-0) with 25 Clients and 3 Insiders running OneAtOnce-Attack

Pattern
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A.1. Full Results

Figure A.26.: MOTAG-noproxy (1-0) with 25 Clients and 3 Insiders running OneAtOnce-

Attack Pattern
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